These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulated light-activated electrochemistry at silicon functionalized with metal-organic frameworks towards addressable DNA chips. Author: Wang J, Yang Z, Chen W, Du L, Jiao B, Krause S, Wang P, Wei Q, Zhang DW, Wu C. Journal: Biosens Bioelectron; 2019 Dec 15; 146():111750. PubMed ID: 31605989. Abstract: Modulated light-activated electrochemistry (MLAE) at semiconductor/liquid interfaces derived from light-addressable potentiometric sensor (LAPS) and light-activated electrochemistry (LAE) for addressable photoelectrochemical sensing has been proposed as a new sensor platform. In this system, a bias voltage is applied to create a depletion layer at the silicon/electrolyte interface. Meanwhile, intensity-modulated light illuminates the movable electrode to generate electron/hole pairs and causes a detectable local AC photocurrent. The AC measurement showed a higher signal-to-noise ratio (SNR) of photocurrents compared to the traditional DC response, while a steeper photocurrent-voltage (I-V) curve than that of LAPS with an insulating layer was obtained. Furthermore, to stabilize and functionalize the silicon substrate, metal-organic framework (MOF) nanoparticles were grown in-situ on the silicon electrode. The successful modification was validated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The AC photocurrent increased as a result of the adsorption of negatively charged DNA, which contributed to the enhancement of the cathodic reduction process at the semiconductor electrodes, indicating a different response mechanism of MLAE from LAPS. The results obtained demonstrate the potential of MOF functionalized MLAE as a robust platform for light-addressable DNA chips with high sensitivity and specificity.[Abstract] [Full Text] [Related] [New Search]