These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Author: Li D, Li R, Ding Z, Ruan X, Luo J, Chen J, Zheng J, Tang J. Journal: Chemosphere; 2020 Feb; 241():125039. PubMed ID: 31606568. Abstract: Heavy metal removal from contaminated soils is a long-term challenging problem important for global economics, environment, and human health. Marine and freshwater-originated Mn(II)-oxidizing bacteria are considered as the promising bioremediation agents for environmental applications. However, practical application of soil-originated Mn(II)-oxidizing bacteria remains to be developed for contaminated soil remediation. In this work, the Mn(II) biosorption/oxidation mechanism of a new soil-originated bacterium and its bioleaching efficiency of heavy metals from soils was studied in detail. First, we found, isolated and identified a new highly Mn(II)-tolerant bacterial strain Providencia sp. LLDRA6 from heavy metal-contaminated soils. Next, strain LLDRA6 demonstrated its high Mn(II) biosorption capacity in aqueous solution. Then, Mn(II) adsorption by LLDRA6 was largely proven to be a synergistic effect of (i) Mn(II) precipitation on the cell surface, (ii) oxidation of Mn(II) into BioMnOx on the cell surface, and (iii) intracellular accumulation of insoluble MnCO3. Finally, combination bioleaching by the bacterium of Providencia sp. LLDRA6 and its formed BioMnOx was proposed to develop a potential environment-friendly and cost-effective technique to remediate severely heavy metal-contaminated soils. The bioleaching tests demonstrated that the combination of Providencia sp. LLDRA6 and BioMnOx exhibited an excellent removal efficiency for heavy metals of Pb (81.72%), Cr (88.29%), Cd (90.34%), Cu (91.25%), Mn (56.13%), and Zn (59.83%) from contaminated soils, resulting in an increase of removal efficiency in the range of 1.68-26.4% compared to Providencia sp. LLDRA6 alone. Moreover, the bacterial leachate facilitated the residual fraction of metals to transform into the easily migratory fractions in soils. These findings have demonstrated that strain LLDRA6 has high adsorption ability to remove heavy metals from contaminated soils, thus providing a promising bio-adsorbent for environmental bioremediation.[Abstract] [Full Text] [Related] [New Search]