These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants. Author: Li H, Zhang J, Yao Y, Miao X, Chen J, Tang J. Journal: Environ Pollut; 2019 Dec; 255(Pt 2):113337. PubMed ID: 31610507. Abstract: In this work, we report on the synthesis and characterization of nanoporous bimetallic metal-organic frameworks (FeCo-BDC). Effects of synthesis time and temperature on the structures, morphology, and catalytic performance of FeCo-BDC were investigated. Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) were used to reveal the morphological and textural characteristics. The crystal structure and chemical composition of FeCo-BDC were determined by means of X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements. Interestingly, FeCo-BDC grew into the same crystal structure with different morphology in the temperature of 110-150 °C with 12-48 h. The heterogeneous catalytic activity of FeCo-BDC was tested to activate peroxydisulfate (PDS) and peroxymonosulfate (PMS) for removal of methylene blue (MB). The results found that FeCo-BDC synthesized at 150 °C with 24 h exhibited the best catalytic performance for PMS and obtained 100% of MB removal within 15 min. The abundant unsaturated metal active sites of Fe(II) and Co(II) in the skeleton of FeCo-BDC made a great contribution to the generation of sulfate () and hydroxyl radicals (OH), which resulted in the excellent performance for MB degradation.[Abstract] [Full Text] [Related] [New Search]