These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assessment of crustal element and trace metal concentrations in atmospheric particulate matter over a coastal city in the Eastern Arabian Sea. Author: Gaonkar CV, Kumar A, Matta VM, Kurian S. Journal: J Air Waste Manag Assoc; 2020 Jan; 70(1):78-92. PubMed ID: 31613714. Abstract: Major/crustal elements (Al, Ca, Mg, K, and Fe) and trace metals (Mn, Cr, Cu, Pb, Zn, and Ni) in atmospheric particulate matter at three sites in Goa (a coastal city in the Eastern Arabian Sea) were assessed during winter (December) and summer (March-May) months of 2015. A significant spatial and temporal variability was observed in PM10 mass concentration, crustal element, and trace metal composition at the sampling area (pristine, urban, and industrial locations). Using a diagnostic crustal element ratio (Fe/Al, Ca/Al, and Mg/Al), mineral dust components were characterized and found to show large spatial and temporal variability. The concentration levels of trace metals were further assessed for enrichment factor (EF) analysis, wherein reported elements were classified into two major groups. The first group consists of Cr, Cu, and Pb with 10< EF < 100 compared to continental crustal values (w.r.t. Al), suggesting a dominant contribution from anthropogenic sources with minor contribution from natural sources; the second group consists of Zn and Ni showing very high EF (>100)-these are solely derived from anthropogenic sources. Source identification for trace metals was further assessed based on principle component analysis (PCA). PCA highlights that the major contribution of trace metals is from anthropogenic emissions at all three locations. However, contributions from mineral dust were observed at pristine and urban locations during winter months. The reported data of trace metal concentrations in aerosols give baseline information on the atmospheric supply of micronutrients to the Arabian Sea, which has implications for the various surface ocean biogeochemical processes.Implications: This paper reports on crustal and trace metal composition and concentration level in atmospheric aerosols over a coastal city located on the Eastern Arabian Sea. This study highlights the role of various factors (meteorology and emission sources) controlling the abundance of metals over a coastal site. The contribution from various sources (anthropogenic vis-à-vis natural) has also been identified using enrichment factor analysis as well as principle component analysis. This study has implications for the supply of micronutrients to the coastal Arabian Sea, which can significantly impact various surface ocean biogeochemical processes.[Abstract] [Full Text] [Related] [New Search]