These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Author: Liu L, Liu J.
    Journal: J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458.
    Abstract:
    Inferring gene regulatory networks (GRNs) is vital to understand the complex cellular processes and reveal the regulatory mechanisms among genes. Although various methods have been developed, more accurate algorithms which can control the sparseness of GRNs still need to be developed. In this work, we model GRNs by fuzzy cognitive maps (FCMs), and a node in an FCM means a gene. Then, a new sparse and decomposed particle swarm optimization, termed as SDPSOFCM-GRN, is proposed to train FCMs, which employs the least absolute shrinkage and selection operator (Lasso) to control the network sparseness with a decomposed strategy. In the experiments, the performance of SDPSOFCM-GRN is validated on synthetic data and the well-known benchmark DREAM3 and DREAM4. The results show that SDPSOFCM-GRN can well control the sparseness of GRNs, and infer directed GRNs with high accuracy and efficiency.
    [Abstract] [Full Text] [Related] [New Search]