These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of cytoplasmic nodule-associated forms of malate dehydrogenase involved in the symbiosis between Rhizobium leguminosarum and Pisum sativum. Author: Appels MA, Haaker H. Journal: Eur J Biochem; 1988 Feb 01; 171(3):515-22. PubMed ID: 3162212. Abstract: The malate dehydrogenase activity (EC 1.1.1.37), present in the cytoplasm of Pisum sativum root nodules, can be separated by ion-exchange chromatography into four different fractions. Malate dehydrogenase activity present in the cytoplasm of roots elutes mainly as a single peak. During nodule development an increase in malate dehydrogenase activity per gram of material was observed. This increase occurred concomitantly with the increase in nitrogenase activity. The kinetic properties of the separated malate dehydrogenases of root nodule cytoplasm and root cytoplasm were studied. The Km values for malate (2.6 mM), NAD+ (27 microM), oxaloacetate (18 microM) and NADH (13 microM) of the dominant form of the root nodule cytoplasm are much lower than those of the dominant malate dehydrogenase root form (64 mM, 4.4 mM, 89 microM and 70 microM respectively). Binding of malate by the enzyme-NADH complex from root nodules results in an abortive complex, thereby blocking the further reduction of oxaloacetate by NADH. The dominant root malate dehydrogenase does not form the abortive complex. From the kinetic data it is concluded, first, that the root nodule forms of the enzyme are capable of catalysing at a high rate the reduction of oxaloacetate, to meet the demands for malate governed by the bacteroid and the infected plant cell. The second conclusion, drawn from the kinetic data, is that under physiological conditions the conversion of oxaloacetate can be controlled just by the malate concentration. Consequently the major root nodule forms of malate dehydrogenase are able to allow a high flux of malate production from oxaloacetate but also to establish a sufficient oxaloacetate concentration necessary for the assimilation and transport of fixed nitrogen.[Abstract] [Full Text] [Related] [New Search]