These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Author: Tamburaci S, Tihminlioglu F. Journal: Int J Biol Macromol; 2020 Jan 01; 142():643-657. PubMed ID: 31622724. Abstract: POSS, regarded as the smallest silica particle, is widely used as nanofiller in polymer systems. POSS-based nanocomposites are deduced as novel materials having potency for biomedical applications owing to the enhanced biocompatibility and physicochemical characteristics. The aim of this work was to integrate the beneficial features of chitosan (CS) and OctaTMA-POSS nanoparticle to design nanocomposite for bone tissue regeneration. The nanocomposite scaffolds were fabricated by freeze-drying. The effects of POSS incorporation on morphology and structure of CS matrix were examined. Bioactivity and osteogenic effects of the POSS nanoparticles were investigated with cytocompatibility, cell proliferation, alkaline phosphatase activity, osteocalcin production and biomineralization assays. POSS incorporation altered the surface morphology by increasing surface roughness. Nanocomposite scaffolds with 82-90% porosity exhibited an increase in compression modulus of scaffolds (78-107 kPa) compared to control CS group (56 kPa). Results indicated that CS-POSS scaffolds were found cytocompatible with 3T3, MG-63 and Saos-2 cell lines. POSS incorporation showed promising effects on osteoblast adhesion and proliferation as well as increasing ALP activity, octeocalcin secretion and biomineralization of cells.[Abstract] [Full Text] [Related] [New Search]