These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: AGEs impair Kv channel-mediated vasodilation of coronary arteries by activating the NF-κB signaling pathway in ZDF rats.
    Author: Liu Q, Hua B, Su W, Di B, Yu S, Gao S, Liu H, Zhao X, Li W, Li H.
    Journal: Biomed Pharmacother; 2019 Dec; 120():109527. PubMed ID: 31629953.
    Abstract:
    Excessive formation of advanced glycation end products (AGEs) impairs voltage-gated potassium (Kv) channels in rat coronary artery smooth muscle cells (CSMCs), resulting in weakened Kv-mediated coronary vasodilation. We hypothesized that induction of the nuclear factor-κB (NF-κB) signaling pathway by AGEs plays a significant role in the regulation of Kv channel-mediated vasodilation in Zucker diabetic fatty (ZDF) rats. Assays of mRNA transcripts, protein expression, and intracellular localization as well as patch-clamp experiments in cultured CSMCs revealed that AGEs significantly induced activation of the NF-κB signaling pathway, reduced Kv1.2/1.5 expression, and inhibited Kv currents. In addition, silencing of the receptor for AGEs (RAGE) or p65 with siRNA and treatment with alagrebrium (ALA) or pyrrolidine dithiocarbamate (PDTC) alleviated the AGE-induced impairment of Kv channels in CSMCs. Compared with Zucker lean (ZL) rats, the amount of AGEs, RAGE protein expression, and NF-κB activity in coronary arteries were higher in ZDF rats; whereas Kv1.2/1.5 expression was significantly lower in ZDF rats. Reduced Kv1.2/1.5 expression in coronary arteries and impaired Kv-mediated coronary relaxation tested by wire myography in ZDF rats were markedly improved by treatment with aminoguanidine (AG), ALA, or PDTC. These effects were accompanied by diminished NF-κB activity, inflammation, and oxidative stress. Taken together, these results indicate that an increased interaction between AGEs and RAGE in diabetic rats leads to impaired Kv channel-mediated coronary vasodilation. Moreover, activation of the NF-κB signaling pathway and a subsequent increase of inflammation and oxidative stress may play an important role in AGE-induced impairment of coronary vasodilation in diabetes.
    [Abstract] [Full Text] [Related] [New Search]