These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reliable Nonvolatile Memory Black Phosphorus Ferroelectric Field-Effect Transistors with van der Waals Buffer. Author: Yan S, Huang H, Xie Z, Ye G, Li XX, Taniguchi T, Watanabe K, Han Z, Chen X, Wang J, Chen JH. Journal: ACS Appl Mater Interfaces; 2019 Nov 13; 11(45):42358-42364. PubMed ID: 31633328. Abstract: Two-dimensional material-based ferroelectric field-effect transistors (2D-FeFETs) hold great promise in information storage and processing. However, an often-observed and hard-to-control anti-hysteresis response of 2D-FeFETs, for example, hysteretic switching of the resistance states of the devices opposite to that of the actual polarization of the ferroelectric dielectric, represents a major issue in the industrial applications of such devices. Here, we demonstrate a van der Waals buffer technique that eliminates anti-hysteresis in black phosphorus (BP) 2D-FeFETs and restores their intrinsic hysteretic behavior. Our modified BP 2D-FeFETs showed outstanding performance including high room-temperature carrier mobility, robust bistable states with fast response to a gate, a large on/off ratio at zero gate voltage, a large and considerably more stable memory window, and a long retention time. During repeated gate operation, the memory window of the buffered device is ∼7000 times more stable than the unbuffered device. Such a method could be crucial in future information technological applications that utilize the intrinsic properties of 2D-FeFETs.[Abstract] [Full Text] [Related] [New Search]