These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Upregulated expression of eIF3C is associated with malignant behavior in renal cell carcinoma.
    Author: Fan M, Wang K, Wei X, Yao H, Chen Z, He X.
    Journal: Int J Oncol; 2019 Dec; 55(6):1385-1395. PubMed ID: 31638200.
    Abstract:
    Eukaryotic initiation factor 3c (eIF3C) is involved in the initiation of protein translation. Aberrant eIF3C expression has been reported in different types of human cancer. The present study aimed to assess the role of eIF3C in the malignant behavior of renal cell carcinoma in vitro and in vivo. eIF3C expression was assessed in 16 pairs of renal cell carcinoma (RCC) and matched distant normal tissues, and in RCC cell lines using immunohistochemistry. Subsequently, eIF3C was depleted using lentiviral short hairpin RNA and cell proliferation, cell cycle distribution and apoptosis of these eIF3C‑depleted cells were examined. Additionally, tumor cell xenograft assays in nude mice, Affymetrix microarrays and ingenuity pathway analyses were performed. eIF3C expression was upregulated in RCC tissues and cell lines. Depletion of eIF3C reduced tumor cell proliferation and arrested them at the G1 stage, thus promoting their apoptosis in vitro. Depletion of eIF3C also inhibited the formation and growth of tumor cell xenografts in nude mice. In addition, depletion of eIF3C altered the expression levels of 994 differentially expressed genes in RCC cells (516 genes were upregulated and 478 genes were downregulated). The expression levels of phosphorylated‑AKT, c‑JUN and NFKB inhibitor α were lower in the shorth hairpin RNA eIF3C‑transfected RCC cells compared with in the control group. In conclusion, the present study demonstrated that upregulated eIF3C expression contributed to the development and progression of RCC. Future studies should further evaluate whether eIF3C could be used as a potential strategy for RCC targeting therapy.
    [Abstract] [Full Text] [Related] [New Search]