These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: System Accuracy Assessment of a Combined Invasive and Noninvasive Glucometer. Author: Pfützner A, Demircik F, Pfützner J, Kessler K, Strobl S, Spatz J, Pfützner AH, Lier A. Journal: J Diabetes Sci Technol; 2020 May; 14(3):575-581. PubMed ID: 31640424. Abstract: BACKGROUND: The pain associated with pricking the fingertip for blood glucose self-testing is considered to be a major burden in diabetes treatment. This study was performed to evaluate the system accuracy of the invasive TensorTip Combo Glucometer (CoG) device component in accordance with ISO15197:2015 requirements and to explore the accuracy of the noninvasive tissue glucose prediction component. METHODS: One hundred samples were obtained from people with type 1 and type 2 diabetes and healthy volunteers (43 females, 57 males; age: 53 ± 16 years), with glucose distribution as requested by the ISO standard. Three strip lots were tested twice by healthcare professionals in comparison to YSI 2300 Stat Plus reference method followed by a noninvasive tissue glucose reading (NI-CoG). Mean Absolute (Relative) Difference (MARD) was calculated and a consensus error grid (CEG) analysis was performed. RESULTS: The ISO system accuracy criteria were met with the invasive strip technology by 586/600 of the data points (97.1%) and for each strip lot separately. All invasive results (100%) were within CEG-zone A and total MARD was calculated to be 7.1%. With the noninvasive reading, 99% of raw data points were in A + B (91.1% and 7.8%), and the total MARD was calculated to be 18.1%. DISCUSSION: The invasive component of the CoG device was shown to be in full compliance with the current ISO15197 criteria. Good results were also obtained with the NI-CoG tissue glucose prediction. This noninvasive technology would potentially be suitable for frequent pain-free glucose monitoring in many people with diabetes.[Abstract] [Full Text] [Related] [New Search]