These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Subregional differences in GABAA receptor subunit expression in the rostral ventrolateral medulla of sedentary versus physically active rats. Author: Mueller PJ, Fyk-Kolodziej BE, Azar TA, Llewellyn-Smith IJ. Journal: J Comp Neurol; 2020 Apr; 528(6):1053-1075. PubMed ID: 31642070. Abstract: Neurons in the rostral ventrolateral medulla (RVLM) regulate blood pressure through direct projections to spinal sympathetic preganglionic neurons. Only some RVLM neurons are active under resting conditions due to significant, tonic inhibition by gamma-aminobutyric acid (GABA). Withdrawal of GABAA receptor-mediated inhibition of the RVLM increases sympathetic outflow and blood pressure substantially, providing a mechanism by which the RVLM could contribute chronically to cardiovascular disease (CVD). Here, we tested the hypothesis that sedentary conditions, a major risk factor for CVD, increase GABAA receptors in RVLM, including its rostral extension (RVLMRE ), both of which contain bulbospinal catecholamine (C1) and non-C1 neurons. We examined GABAA receptor subunits GABAAα1 and GABAAα2 in the RVLM/RVLMRE of sedentary or physically active (10-12 weeks of wheel running) rats. Western blot analyses indicated that sedentary rats had lower expression of GABAAα1 and GABAAα2 subunits in RVLM but only GABAAα2 was lower in the RVLMRE of sedentary rats. Sedentary rats had significantly reduced expression of the chloride transporter, KCC2, suggesting less effective GABA-mediated inhibition compared to active rats. Retrograde tracing plus triple-label immunofluorescence identified fewer bulbospinal non-C1 neurons immunoreactive for GABAAα1 but a higher percentage of bulbospinal C1 neurons immunoreactive for GABAAα1 in sedentary animals. Sedentary conditions did not significantly affect the number of bulbospinal C1 or non-C1 neurons immunoreactive for GABAAα2 . These results suggest a complex interplay between GABAA receptor expression by spinally projecting C1 and non-C1 neurons and sedentary versus physically active conditions. They also provide plausible mechanisms for both enhanced sympathoexcitatory and sympathoinhibitory responses following sedentary conditions.[Abstract] [Full Text] [Related] [New Search]