These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermal-transport studies of kagomé antiferromagnets. Author: Yamashita M, Akazawa M, Shimozawa M, Shibauchi T, Matsuda Y, Ishikawa H, Yajima T, Hiroi Z, Oda M, Yoshida H, Lee HY, Han JH, Kawashima N. Journal: J Phys Condens Matter; 2020 Feb 13; 32(7):074001. PubMed ID: 31648207. Abstract: Searching for the ground state of a kagomé Heisenberg antiferromagnet (KHA) has been one of the central issues of condensed-matter physics, because the KHA is expected to host spin-liquid phases with exotic elementary excitations. Here, we show our longitudinal ([Formula: see text]) and transverse ([Formula: see text]) thermal conductivities measurements of the two kagomé materials, volborthite and Ca kapellasite. Although magnetic orders appear at temperatures much lower than the antiferromagnetic energy scale in both materials, the nature of spin liquids can be captured above the transition temperatures. The temperature and field dependence of [Formula: see text] is analyzed by spin and phonon contributions, and large sample variations of the spin contribution are found in volborthite. Clear changes in [Formula: see text] are observed at the multiple magnetic transitions in volborthite, showing different magnetic thermal conduction in different magnetic structures. These magnetic contributions are not clearly observed in low-[Formula: see text] crystals of volborthite, and are almost absent in Ca kapellasite, showing the high sensitivity of the magnetic excitation in [Formula: see text] to the defects in crystals. On the other hand, a clear thermal Hall signal has been observed in the lowest-[Formula: see text] crystal of volborthite and in Ca kapellasite. Remarkably, both the temperature dependence and the magnitude of [Formula: see text] of volborthite are found to be very similar to those of Ca kapellasite, despite of about an order of magnitude difference in [Formula: see text] We find that [Formula: see text] of both compounds is well reproduced, both qualitatively and quantitatively, by spin excitations described by the Schwinger-boson mean-field theory applied to KHA with the Dzyaloshinskii-Moriya interaction. This excellent agreement demonstrates not only that the thermal Hall effect in these kagomé antiferromagnets is caused by spins in the spin liquid phase, but also that the elementary excitations of this spin liquid phase are well described by the bosonic spin excitations.[Abstract] [Full Text] [Related] [New Search]