These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and characterization of Ag-loaded p-type TiO2 for adsorption and photocatalytic degradation of tetrabromobisphenol A.
    Author: Zhang Y, Zhou S, Su X, Xu J, Nie G, Zhang Y, He Y, Yu S.
    Journal: Water Environ Res; 2020 May; 92(5):713-721. PubMed ID: 31650659.
    Abstract:
    A p-type TiO2 with Ti vacancies (D-TiO2 ) was synthesized by a facile solvothermal treatment, and Ag/TiO2 with different Ag loading amount was prepared through a photo-reduction deposition method. The samples were characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The adsorption and photocatalytic characteristics of tetrabromobisphenol A (TBBPA) on D-TiO2 and Ag/TiO2 were investigated. The adsorption of TBBPA on Ag/TiO2 was significantly enhanced and was five times greater than that of pure TiO2 . The increase in pH significantly inhibited the adsorption of TBBPA. The 2%-Ag/TiO2 nearly completely degraded TBBPA in 10 min under UV-Vis light (λ > 360 nm), and the apparent reaction rate constant (kapp ) reached 0.63 min-1 . The significantly enhanced UV-Vis light catalytic properties of the Ag/TiO2 in comparison with that of TiO2 were attributed to the increased adsorption capacity and electron transfer ability of the Ag/TiO2 . Free radical trap experiments results showed that holes and superoxide radicals play a major role in the catalytic degradation of TBBPA by Ag/TiO2 . Moreover, the Ag/TiO2 catalyst exhibits high stability during TBBPA degradation even after three cycles. PRACTITIONER POINTS: Ti-defected TiO2 and Ag/TiO2 were synthesized using a solvothermal and photo-reduction deposition, respectively. Ag/TiO2 exhibited outstanding adsorption and photocatalytic activity for TBBPA removal under UV-Vis light. Holes and superoxide radicals play a major role in the photocatalytic degradation of TBBPA.
    [Abstract] [Full Text] [Related] [New Search]