These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of glycated and acetylated lysine residues in human α2-antiplasmin.
    Author: Bryk AH, Cysewski D, Dadlez M, Undas A.
    Journal: Biochem Biophys Res Commun; 2020 Jan 01; 521(1):19-23. PubMed ID: 31653347.
    Abstract:
    BACKGROUND: The post-translational protein modification via lysine residues can significantly alter its function. α2-antiplasmin, a key inhibitor of fibrinolysis, contains 19 lysine residues. AIM: We sought to identify sites of glycation and acetylation in human α2-antiplasmin and test whether the competition might occur on the lysine residues of α2-antiplasmin. METHODS: We analyzed human α2-antiplasmin (1) untreated; (2) incubated with increasing concentrations of β-d-glucose (0, 5, 10, 50 mM); (3) incubated with 1.6 mM acetylsalicylic acid (ASA) and (4) incubated with 1.6 mM ASA and 50 mM β-d-glucose, using the ultraperformance liquid chromatography system coupled to mass spectrometer. RESULTS: Eleven glycation sites and 10 acetylation sites were found in α2-antiplasmin. Incubation with β-d-glucose was associated with glycation of 4 (K-418, K-427, K-434, K-441) out of 6 lysine residues, known to be important for mediating the interaction with plasmin. Glycation and acetylation overlapped at 9 sites in samples incubated with β-d-glucose or ASA. Incubation with concomitant ASA and β-d-glucose was associated with the decreased acetylation at all sites overlapping with glycation sites. At K-182 and K-448, decreased acetylation was associated with increased glycation when compared with α2-antiplasmin incubated with 50 mM β-d-glucose alone. Although K-24 located in the proximity of the α2-antiplasmin cleavage site, was found to be only acetylated, incubation with ASA and 50 mM β-d-glucose was associated the absence of acetylation at that site. CONCLUSION: Human α2-antiplasmin is glycated and acetylated at several sites, with the possible competition between acetylation and glycation at K-182 and K-448. Our finding suggests possibly relevant alterations to α2-antiplasmin function at high glycemia and during aspirin use.
    [Abstract] [Full Text] [Related] [New Search]