These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Author: Liu L, Wang Y, Yan R, Liang L, Zhou X, Liu H, Zhang X, Mao Y, Peng W, Xiao Y, Zhang F, Liu L, Shi M, Guo B. Journal: Life Sci; 2019 Dec 01; 238():116957. PubMed ID: 31655195. Abstract: Epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition in renal tubular epithelial cells are critical to diabetic nephropathy (DN) pathogenesis, but the underlying mechanisms remain undefined. Bone morphogenetic protein 7 (BMP-7) inhibits EMT and ECM accumulation in renal tubular epithelial cells cultured in presence of high glucose. Meanwhile, miRNA-21 (miR-21) downregulates Smad7, promoting EMT and ECM deposition. However, the association of BMP-7 with miR-21/Smad7 in DN is unknown. Here, NRK-52E cells incubated in presence of high glucose and STZ-induced C57BL diabetic mice were considered in vitro and in vivo models of DN, respectively. In both models, BMP-7 (mRNA/protein) amounts were decreased as well as Smad7 protein expression, while miR-21 expression and TGF-β1/Smad3 pathway activation were enhanced, accompanied by enhanced EMT and ECM deposition. Further, addition of BMP-7 human recombinant cytokine (rhBMP-7) and injection of the BMP-7 overexpression plasmid in diabetic mice markedly downregulated miR-21 and upregulated Smad7, reduced Smad3 activation without affecting TGF-β1 amounts, and prevented EMT and ECM accumulation. MiR-21 overexpression in the in vitro model downregulated Smad7, promoted EMT and ECM accumulation without affecting BMP-7 amounts, and miR-21 downregulation reversed it. By interfering with BMP-7 and miR-21 expression in high glucose conditions, miR-21 amounts and Smad3 phosphorylation were further decreased. Smad7 was then upregulated, and EMT and ECM deposition were inhibited; these effects were reversed after miR-21 overexpression. These findings suggest that BMP-7 decreases renal fibrosis in DN by regulating miR-21/Smad7 signaling, providing a theoretical basis for the development of novel and effective therapeutic drugs for DN.[Abstract] [Full Text] [Related] [New Search]