These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic variants in the LPL and GPIHBP1 genes, in patients with severe hypertriglyceridaemia, detected with high resolution melting analysis.
    Author: Ariza MJ, Pérez-López C, Almagro F, Sánchez-Tévar AM, Muñiz-Grijalvo O, Álvarez-Sala Walter LA, Rioja J, Sánchez-Chaparro MÁ, Valdivielso P.
    Journal: Clin Chim Acta; 2020 Jan; 500():163-171. PubMed ID: 31669931.
    Abstract:
    INTRODUCTION: Pathogenic variants in lipoprotein lipase (LPL) and glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) have been described in patients with severe hypertriglyceridaemia. We aimed to optimise high resolution melting (HRM) assays to detect the presence of functional variants in these genes. METHODS: One hundred and sixteen patients with severe hypertriglyceridaemia were studied. HRM assays were optimised to scan exons and splice junctions in LPL and GPIHBP1. Sanger sequencing was the reference method. Next-generation-sequencing (NGS) was performed in five patients, including one with Familial Chylomicronemia syndrome (FCS). RESULTS: We identified 15 different variants in LPL and 6 in GPIHBP1. The variants revealed with NGS were also detected with HRM, including a rare premature stop codon in LPL (p.Trp421*) and two LPL pathogenic variants in the patient with FCS (p.His80Arg + p.Gly215Glu). Having multiple functional variant alleles was associated with pancreatitis onset at younger ages and higher baseline triglycerides. CONCLUSIONS: Our HRM assays detected the presence of functional gene variants that were confirmed with Sanger and NGS sequencing. The presence of multiple functional variant alleles was associated with differences in the clinical profile. Therefore, these assays represent a reliable, cost-effective tool that can be used to complement the NGS approach for gene scanning.
    [Abstract] [Full Text] [Related] [New Search]