These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of metals of treated electroplating industrial effluents on antioxidant defense system in the microalga Chlorella vulgaris.
    Author: Ajitha V, Sreevidya CP, Kim JH, Bright Singh IS, Mohandas A, Lee JS, Puthumana J.
    Journal: Aquat Toxicol; 2019 Dec; 217():105317. PubMed ID: 31670168.
    Abstract:
    The microalga Chlorella vulgaris is one of the prominent and most widely distributed green microalgae found in aquatic environments, often used in toxicity tests due to its sensitivity to various pollutants. To examine the toxicity of metals found in the effluent discharges from an electroplating industry, physicochemical parameters in the microalga C. vulgaris were measured. pH, turbidity, total dissolved solids, color, and the concentrations of metals such as chromium (1.97 mg/L), mercury (104.2 mg/L), and zinc (167.25 mg/L) were found exceeding the permissible limits. Several endpoints such as total protein content, reactive oxygen species (ROS) production, photosynthetic pigment contents, and antioxidant enzymatic activities, including those of superoxide dismutase (SOD) and catalase (CAT), were measured in C. vulgaris in response to treated electroplating industrial effluent (TEPIE). In addition, concentration-dependent morphological changes were also observed in response to TEPIE. Under both acute and chronic TEPIE exposure, increase in the ROS level was observed indicating increased production of ROS in C. vulgaris cells. The total protein and chlorophyll contents were found to be gradually decreasing in an effluent concentration-dependent manner. Moreover, lower concentrations of effluent stimulated the antioxidant enzyme systems. A concentration-dependent increase was observed in both SOD and CAT enzymatic activities. The results indicated toxic impairments by the effluent on the function of C. vulgaris in response to both acute and chronic exposure, indicating an urgent need of proper treatment processes/modification of the existing one of TEPIE, with continuous monitoring of the discharge of the pollutants into the aquatic ecosystems using biological assays.
    [Abstract] [Full Text] [Related] [New Search]