These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vanadium K-edge absorption spectrum of bromoperoxidase from Ascophyllum nodosum. Author: Hormes J, Kuetgens U, Chauvistre R, Schreiber W, Anders N, Vilter H, Rehder D, Weidemann C. Journal: Biochim Biophys Acta; 1988 Oct 12; 956(3):293-9. PubMed ID: 3167074. Abstract: With synchrotron radiation from the Bonn 2.5 GeV synchrotron, high-resolution absorption spectra have been measured at the vanadium K-edge of bromoperoxidase from the marine brown alga Ascophyllum nodosum and several model compounds. The near-edge structure (XANES) of these spectra was used to determine the charge state and the coordination geometry around the vanadium atom. For the active enzyme a coordination charge of 2.7 was found which is compatible with a formal valence of +5, assuming coordination by atoms with a high electronegativity such as oxygen or nitrogen. For the reduced enzyme the coordination charge value of 2.15 indicates the reduction of the valency by 1 unit. Our results suggest that the coordination sphere of the vanadium atom in the native enzyme consists of at least seven oxygen atoms in a distorted octahedral environment with an average bond length of about 2 A. Through the reduction process, the coordination sphere of the vanadium atom changes with a simultaneous decrease of the coordination cage. These results agree with those deduced from previous EPR and 51V-NMR measurements.[Abstract] [Full Text] [Related] [New Search]