These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative study on metabolic profiling and excretion in rat bile between combination of notoginseng total saponins and safflower total flavonoids and its individual extracts by LC-MS/MS.
    Author: Song JY, Chen JF, Lu YY, Chang K, Zhao MB, Tu PF, Jiang Y, Guo XY.
    Journal: J Pharm Biomed Anal; 2020 Jan 30; 178():112936. PubMed ID: 31672581.
    Abstract:
    The combination of notoginseng total saponins (NS) and safflower total flavonoids (SF), namely CNS, presents a synergistic protection effect on the myocardial ischemia rats. The aim of this study was to find the clues for their synergistic actions by comparing the biliary metabolism and excretion profiles after oral administration of CNS and its individual extracts. An ultra-performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometer (UPLC-QTRAP-MS/MS) platform was used to identify and quantify the CNS-derived components in bile. The neutral losses, precursor ions, and predictive multiple reaction monitoring (pMRM) scans were firstly used to detect the CNS-derived ingredients in vivo. A total of 43 components, including 38 flavonoids and 5 ginsenosides were tentatively identified according to the previously established chemical and metabolic profiles of NS and SF. Afterwards, the primary circulating and biological components, hydroxysafflor yellow A (HSYA), ginsenosides Rg1 (GRg1), Re (GRe), and Rd (GRd) were chosen to compare the bile excretion between CNS and its individual extract groups, by using a validated LC-MRM-MS/MS method. The approach was proved to be well satisfied the related requirements from the guidelines of FDA (specificity, calibration curve, sensitivity, precision, accuracy, matrix effect, recovery, and stability). Comparing with the SF and NS groups, the combination group did not affect the metabolic pathways of the CNS-related components, however, it decreased the cumulative excretion ratios of HSYA, GRg1, GRe, and GRd. In conclusion, the compatibility of SF and NS could reduce the bile excretion of the CNS-derived compounds, which may be one of the reasons for the enhancement of anti-myocardial ischemia after combination.
    [Abstract] [Full Text] [Related] [New Search]