These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation.
    Author: Spivak AY, Khalitova RR, Nedopekina DA, Gubaidullin RR.
    Journal: Steroids; 2020 Feb; 154():108530. PubMed ID: 31678136.
    Abstract:
    A series of 34 new amine- and guanidine-functionalized derivatives of betulinic, ursolic, and oleanolic acids were synthesized and tested for their antimicrobial activity against the growth of four bacterial strains (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus (MRSA)) and two fungal strains (Candida albicans and Cryptococcus neoformans). The obtained compounds were also tested for the cytotoxic effect against HEK293 human embryonic kidney cell line and hemolytic activity against human red blood cells. Most of the prepared amino and guanidinium derivatives of betulinic, ursolic, and oleanolic acids showed a considerably higher bacteriostatic activity against methicillin-resistant S. aureus than the parent compounds. The most active compounds (MICs ≤ 0.25 μg/ml or 0.4-0.5 μM) were superior over the clinically used antibiotic vancomycin in the antibacterial effect (MIC of 1 μg/ml or 0.7 μM). Apart from antibacterial activity, new triterpene acid derivatives exhibited excellent antifungal activity against Cryptococcus neoformans, with MICs values being as low as 0.25 μg/ml (0.4 μM), and were approximately 65 times as active as fluconazole, a known antifungal agent. Four most promising compounds we identified (7, 13, 24, and 33) showed not only high bacteriostatic effect, but also low cytotoxicity against mammalian HEK293 cells and high hemolytic selectivity.
    [Abstract] [Full Text] [Related] [New Search]