These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanisms of isoquercitrin attenuates ovalbumin glycation: Investigation by spectroscopy, spectrometry and molecular docking. Author: Zhang L, Xu L, Tu ZC, Wang HH, Luo J, Ma TX. Journal: Food Chem; 2020 Mar 30; 309():125667. PubMed ID: 31679851. Abstract: This research firstly investigated the inhibitory effect of isoquercitrin (ISQ) on Ovalbumin (OVA) glycation. The mechanism was elucidated through the interaction between OVA and ISQ, and changes in glycation sites and degree of each site as deduced by spectroscopy, spectrometry and molecular docking. ISQ significantly inhibited OVA glycation by attenuating the conformational change induced by glycation. It quenched the fluorescence of Trp via static mechanism, and exposed Trp residues to a more hydrophobic surroundings. Formation of OVA-ISQ complex was a endothermic processing driven by hydrophobic interactions, van der Waals forces and hydrogen bonds. LC-Orbitrap-MS/MS revealed that ISQ altered the location of glycation and alleviated the glycation degree of most sites. Molecular docking results indicated that ISQ inserted into the hydrophobic pocket of OVA with six hydrogen bonds and one π-π stacking formed between ISQ and the amino acid residues of OVA, leading to the altered glycation activity of some sites.[Abstract] [Full Text] [Related] [New Search]