These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced Ferromagnetism from Organic-Cerium Oxide Hybrid Ultrathin Nanosheets.
    Author: Yan G, Wang Y, Zhang Z, Li J, Carlos C, German LN, Zhang C, Wang J, Voyles PM, Wang X.
    Journal: ACS Appl Mater Interfaces; 2019 Nov 27; 11(47):44601-44608. PubMed ID: 31686493.
    Abstract:
    Room-temperature ferromagnetism in two-dimensional (2D) oxide materials is an intriguing phenomenon for spintronic applications. Here, we report significantly enhanced room-temperature ferromagnetism observed from ultrathin cerium oxide nanosheets hybridized with organic surfactant molecules. The hybrid nanosheets were synthesized by ionic layer epitaxy over a large area at the water-air interface. The nanosheets exhibited a saturation magnetization of 0.149 emu/g as their thickness reduced to 0.67 nm. This value was 5 times higher than that for CeO2 thin films and more than 20 times higher than that for CeO2 nanoparticles. The magnetization was attributed to the high concentration (15.5%) of oxygen vacancies stabilized by surfactant hybridization as well as electron transfer between organic and oxide layers. This work brings an effective strategy of introducing strong ferromagnetism to functional oxide materials, which leads to a promising route toward exploring new physical properties in 2D hybrid nanomaterials.
    [Abstract] [Full Text] [Related] [New Search]