These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of mitosis onset and thymidine kinase activity during the cell cycle of Physarum polycephalum plasmodia: effect of hydroxyurea.
    Author: Wright M, Tollon Y.
    Journal: Exp Cell Res; 1988 Nov; 179(1):263-72. PubMed ID: 3169145.
    Abstract:
    The effects of hydroxyurea have been investigated on three events of the cell cycle, S-phase, mitosis, and the cyclic synthesis of thymidine kinase, in the synchronous plasmodium of the myxomycete Physarum. DNA synthesis was slowed down with limited action on other macromolecular syntheses and any increase of thymidine kinase that had already been triggered was indistinguishable from that of the control. When DNA synthesis was inhibited, the onset of the following cyclic increase of thymidine kinase synthesis occurred at the same time as in the control, but mitosis was delayed in a very early prophase stage. The arrest of thymidine kinase synthesis occurred after completion of the delayed mitosis. All these effects were suppressed when the action of hydroxyurea was prevented by the addition, to the medium, of the four deoxyribonucleosides. These observations show that (1). The blockage of S-phase does not prevent the nuclei from entering a very early prophase stage but does prevent them from proceeding through metaphase. (2) The transient blockage of DNA synthesis does not perturb the normal timing of the triggering of thymidine kinase synthesis. (3) The signal which triggers the arrest of thymidine kinase synthesis is postmitotic but does not require extensive DNA synthesis. The effect of hydroxyurea is not limited to an inhibition of S-phase. The blockage of DNA replication also led to the dissociation of the normal coordination between two other events of the cell cycle, mitosis and thymidine kinase synthesis. This observation could have strong implications in cell synchronization with chemical agents.
    [Abstract] [Full Text] [Related] [New Search]