These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High congruency MB insert design: stabilizing knee joint even with PCL deficiency. Author: Innocenti B. Journal: Knee Surg Sports Traumatol Arthrosc; 2020 Sep; 28(9):3040-3047. PubMed ID: 31696240. Abstract: PURPOSE: PCL management and choice of insert design and mobility in total knee arthroplasty are still debated in the literature. Consequently, the purpose of this study was to analyze the biomechanics of a fixed and a mobile bearing total knee arthroplasty with conventional and ultra-congruent insert during walking and squat activities, using finite element analysis, and to check the performance in a knee with healthy and deficient PCL. METHODS: The study was based on an already validated and published knee model. Fixed bearing and mobile bearing cruciate-retain designs were selected for this study. Implant kinematics and kinetics were calculated, following previously experimental tests, during a walking cycle and a loaded squat in a knee with intact and with deficient PCL. RESULTS: Mobile bearing design, due to its higher congruency, was able to complete the task in intact and deficient PCL conditions, with similar internal-external femoral rotation and with a slight higher anterior translation of the one of the intact knees. Such outcomes were also in agreement with the results of different experimental studies of native knee specimens under similar boundary conditions. Contrariwise, fixed bearing design was able to accomplish the task only in healthy PCL conditions. CONCLUSION: Results demonstrated how the high congruency of the mobile bearing design is able to guarantee proper knee stability and kinematics even when the PCL is deficient. Instead, the fixed bearing insert, with lower congruency, is not able, in the absence of the PCL, to stabilize the joint inducing irregular kinematic pattern and component dislocation. Surgeons will have to consider these findings to guarantee the best outcome for the patient and the related change in stability in case of PCL deficiency.[Abstract] [Full Text] [Related] [New Search]