These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of tibial tunnel placement in single case posterior cruciate ligament reconstruction: reducing the graft peak stress may increase posterior tibial translation.
    Author: Wang Z, Xiong Y, Li Q, Chen G, Zhang Z, Tang X, Li J.
    Journal: BMC Musculoskelet Disord; 2019 Nov 07; 20(1):521. PubMed ID: 31699065.
    Abstract:
    BACKGROUND: The killer turn has been documented as the primary drawback of posterior cruciate ligament (PCL) reconstruction. Fanelli advocated placing the tibial tunnel outlet in the inferior lateral part of the PCL fovea to reduce the killer turn. This study aimed to confirm the validity of Fanelli's viewpoint regarding PCL reconstruction technique and to assess the specific Fanelli tunnel area on the inferior lateral part of the PCL fovea. METHODS: The geometrical data of the model were obtained by nuclear magnetic resonance (MRI) and computerized tomography (CT), with images taken from a healthy Chinese volunteer. The three-dimensional finite element model of the knee joint was established using Mimics, Geomagic Studio, 3-matic, and Ansys software. The finite analysis was performed after the material behavior, contact and boundary conditions, and loading were defined. The drawer tests were simulated with a posterior tibial load of 134 N at 0°, 30°, 60°, and 90° knee flexion. The PCL peak stress and tibial translation were recorded and compared among the 30 distinct tibial tunnel loci over a range of angles from 0° to 90°. RESULTS: In the area (Fanelli area, 5-20 mm inferior and 5-10 mm lateral to the PCL anatomical insertion), the lowest PCL peak stress in all sites with different flexion angles was lower than that of the PCL anatomical insertion site. The lowest PCL peak stress with different knee flexion angles was observed in the following location: 10 mm inferior and 5 mm lateral to the PCL anatomical insertion. In the Fanelli area, the tibial translations of three sites were lower and those of other sites were higher than that of the PCL anatomical insertion site. CONCLUSIONS: PCL reconstruction in the Fanelli area, especially 10 mm inferior and 5 mm lateral to the PCL anatomical insertion, could reduce the peak stress of the graft and may reduce the killer turn. However, whether the posterior stability of the knee is affected needs to be further studied.
    [Abstract] [Full Text] [Related] [New Search]