These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Near-Infrared Light-Harvesting Fullerene-Based Nanoparticles for Promoted Synergetic Tumor Phototheranostics.
    Author: Shi H, Gu R, Xu W, Huang H, Xue L, Wang W, Zhang Y, Si W, Dong X.
    Journal: ACS Appl Mater Interfaces; 2019 Dec 04; 11(48):44970-44977. PubMed ID: 31702130.
    Abstract:
    A synergetic phototheranostic system, combining diagnostic photo-imaging and phototherapies [such as photothermal therapy and photodynamic therapy (PDT)], shows great potential in today's tumor precise therapy. Herein, we fabricate near-infrared (NIR) light-harvesting fullerene-based nanoparticles (DAF NPs) for photoacoustic (PA) imaging-guided synergetic tumor photothermal and PDT. The fullerene derivatives (DAF) absorbing in the NIR region have been synthesized by conjugating NIR-absorbing antenna with fullerene. In addition, DAF NPs with good biocompatibility have been fabricated via a nanoprecipitation approach. The as-prepared DAF NPs can accumulate and generate PA signals around the tumor site 6 h post injection via enhanced permeability and retention effect in vivo. More importantly, the DAF NPs exhibit better reactive oxygen species and heat generation efficacy compared with fullerene and antenna nanoparticles (DA NPs), respectively. Further in vitro and in vivo studies demonstrate that DAF NPs can effectively inhibit tumor growth through synergetic photodynamic and photothermal therapies, which provides a new sight of photosensitizer design for enhanced cancer phototheranostics.
    [Abstract] [Full Text] [Related] [New Search]