These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. Author: Walker PS, Donovan JA, Van Ness BG, Fellows RE, Pessin JE. Journal: J Biol Chem; 1988 Oct 25; 263(30):15594-601. PubMed ID: 3170599. Abstract: D-Glucose deprivation of primary rat brain glial cell cultures, by incubation with 25 mM D-fructose for 24 h, resulted in a 4-5-fold induction of D-glucose transport activity. In contrast, 24-h D-glucose starvation of primary rat brain neuronal cultures had only a marginal effect (1.5-2-fold) on D-glucose transport activity. Northern blot analysis of total cellular RNA demonstrated that under these conditions the rat brain glial cells specifically increased the steady-state level of the D-glucose transporter mRNA 4-6-fold, whereas Northern blot analysis of the neuronal cell cultures revealed no significant alteration in the amount of D-glucose transporter mRNA by D-glucose deprivation. These findings demonstrated that the D-glucose-dependent regulation of the D-glucose transporter system occurred in a brain cell type-specific manner. The ED50 for the D-glucose starvation increase in the D-glucose transporter mRNA, in the glial cell cultures, occurred at approximately 3.5 mM D-glucose with maximal effect at 0.5 mM D-glucose. Readdition of D-glucose to the starved cell cultures reversed the increase in the D-glucose transporter mRNA levels and D-glucose transport activity to control values within 24 h. The increase in the D-glucose transporter mRNA was relatively rapid with half-maximal stimulation at approximately 2 h and maximal induction by 6-12 h of D-glucose deprivation. A similar time course was also observed for the starvation-induced increase in D-glucose transport activity and D-glucose transporter protein, as determined by Western blot analysis. These results document that, in rat brain glial cells, D-glucose transport activity, protein, and mRNA are regulated by the extracellular D-glucose concentration. Further, this suggests a potential role for hyperglycemia in the down-regulation of the D-glucose transport system in vivo.[Abstract] [Full Text] [Related] [New Search]