These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mother/child organophosphate and pyrethroid distributions. Author: Bravo N, Grimalt JO, Mazej D, Tratnik JS, Sarigiannis DA, Horvat M. Journal: Environ Int; 2020 Jan; 134():105264. PubMed ID: 31706197. Abstract: The present study reports one of the few cases in which organophosphate (OP) and pyrethroid (PYR) pesticide human exposure is evaluated in family contexts by the analysis of mother/child pair samples. Urinary concentrations of 6 organic metabolites of organophosphates and 2 pyrethroids were measured in mothers and their 7-to 8-year-old children (n = 168) in a general population from the central area of Slovenia. The results were adjusted for specific gravity and creatinine. The most abundant OP metabolite in children was 4-nitrophenol (PNP) (median 0.7 ng/ml) and in mothers (0.45 ng/ml), representing parathion exposure. 3-Phenoxibenzoic acid (3-PBA) (0.26 ng/ml), the general metabolite of pyrethroids, and 3,5,6-trichloro-2-pyridinol (TCPY) (0.16 ng/ml; chlorpyriphos) were the second most abundant compounds in children and mothers, respectively. The geometric mean specific gravity adjusted concentrations of OPs and PYRs were statistically significantly higher in children than in their mothers (between 3% and 24% higher), with the exception of TCPY (26% lower). All OP and PYR metabolites found in higher concentration in children showed significant positive correlations with the metabolite concentrations found in the mothers (p < 0.05 and 0.01), involving the fact that higher maternal concentrations were associated with higher children levels. These differential mother-children distributions and significant correlations were observed for the 2 types of pesticides studied, OPs and PYRs, which have different chemical properties. This agreement is consistent with the incorporation of the pesticides because of the general activities developed in the family context, instead of pesticide-dependent specific inputs. Comparison of the estimated daily intakes with the acceptable daily intakes of all detected metabolites revealed no significant risk of adverse health effects from exposure to these pesticides.[Abstract] [Full Text] [Related] [New Search]