These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calmodulin-binding proteins in chromaffin cell plasma membranes.
    Author: Fournier S, Trifaró JM.
    Journal: J Neurochem; 1988 Nov; 51(5):1599-609. PubMed ID: 3171592.
    Abstract:
    Calmodulin-binding proteins present in chromaffin cell plasma membranes were isolated and directly compared with calmodulin-binding proteins present in chromaffin granule membranes. Chromaffin cell plasma membranes were prepared using Cytodex 1 microcarriers. Marker enzyme studies on this preparation showed a nine- to 10-fold plasma membrane enrichment over cell homogenates and a low contamination of these plasma membranes by subcellular organelles. Plasma membranes prepared in this manner were solubilized with Triton X-100 and applied to a calmodulin-affinity column in the presence of calcium. Several major calmodulin-binding proteins (240, 105, and 65 kilodaltons) were eluted by an EGTA-containing buffer. 125I-Calmodulin overlay experiments on nitrocellulose sheets containing both chromaffin plasma and granule membranes showed that these two membranes have several calmodulin-binding proteins in common (65, 60, 53, and 50 kilodaltons), as well as unique calmodulin-binding proteins (34 kilodaltons in granule membranes and 240 and 160 kilodaltons in plasma membranes). The 65-kilodalton calmodulin-binding protein present in both membrane types was shown to consist of two isoforms (pI 6.0 and 6.2) by two-dimensional gel electrophoresis. Previous experiments from our laboratory, using two monoclonal antibodies (mAb 30 and mAb 48) specific for a rat brain synaptic vesicle membrane protein (p65), showed that the monoclonal antibodies reacted with a 65-kilodalton calmodulin-binding protein present in at least three neurosecretory vesicles (chromaffin granules, neurohypophyseal granules, and rat brain synaptic vesicles). When these monoclonal antibodies were tested on chromaffin cell plasma membranes and calmodulin-binding proteins isolated from these membranes, they recognized a 65-kilodalton protein. These results indicate that an immunologically identical calmodulin-binding protein is expressed in both chromaffin granule membranes (as well as other secretory vesicle membranes) and chromaffin cell plasma membranes, thus suggesting a possible role for this protein in granule/plasma membrane interaction.
    [Abstract] [Full Text] [Related] [New Search]