These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synaptic organization of the tectal-facial pathways in the cat. I. Synaptic potentials following collicular stimulation. Author: Vidal PP, May PJ, Baker R. Journal: J Neurophysiol; 1988 Aug; 60(2):769-97. PubMed ID: 3171650. Abstract: 1. The synaptic pathways underlying tectal influence over pinna movements were studied using an acute electrophysiological approach. Under pentobarbital anesthesia, postsynaptic potentials were recorded intracellularly in antidromically identified, cat facial motoneurons following electrical stimulation of the superior colliculus. How collicular topography is reflected in these synaptic potentials was examined using multiple stimulation sites. The pathways responsible for tectally evoked synaptic potentials were studied by making acute brain stem lesions and by intra-axonal horseradish peroxidase (HRP) staining. 2. Monosynaptic excitatory potentials (EPSPs) with latencies ranging from 0.7 to 1.1 ms and amplitudes that were always less than 1 mV were recorded in motoneurons following stimulation of the contralateral superior colliculus. Larger disynaptic EPSPs ranging in latency from 1.2 to 2.0 ms were recorded both in isolation and in association with monosynaptic EPSPs. In addition, disynaptic inhibitory synaptic potentials (IPSPs) with latencies ranging from 1.5 to 2.5 ms were observed, often in combination with monosynaptic EPSPs. Both disynaptic EPSPs and IPSPs were graded, augmented by multiple stimuli and found in all categories of motoneurons. 3. Stimulation of the ipsilateral superior colliculus produced nearly the same spectrum of potentials and latencies as did contralateral tectal stimulation. Occlusion between ipsi- and contralaterally evoked IPSPs suggests there might be a common element in the inhibitory disynaptic pathways. 4. More discrete populations of facial motoneurons were investigated. Specifically, motoneurons innervating the platysma and orbicularis oculi muscles, the intrinsic ear muscles, and muscles that move the vibrissae all displayed tectally elicited mono- and di-synaptic potentials. Collicular input was not restricted to motoneurons involved in orienting the pinnae. 5. The presence, polarity, and amplitude of the synaptic potentials evoked in individual facial motoneurons exhibited variations that were related to the site of stimulation in either the ipsi- or contralateral colliculus. These variations are compatible with the idea that the collicular input to facial motoneurons is topographically organized. 6. Acute lesions at the level of the superior olive indicated that the pathway producing the contralateral monosynaptic EPSPs runs, near the midline, ipsilateral to the target facial nucleus, whereas the contralateral disynaptic and the ipsilateral mono- and disynaptic pathways lie further lateral.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]