These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxidized Dextran as a Macromolecular Crosslinker Stabilizes the Zein/Caseinate Nanocomplex for the Potential Oral Delivery of Curcumin. Author: Rodriguez NJ, Hu Q, Luo Y. Journal: Molecules; 2019 Nov 09; 24(22):. PubMed ID: 31717559. Abstract: In this study, we prepared complex nanoparticles from a combination of two proteins and one polysaccharide for the encapsulation and delivery of lipophilic bioactive compounds. Two proteins, zein and sodium caseinate (NaCas), provided a hydrophobic core for the encapsulation of a lipophilic compound (curcumin), while a polysaccharide dialdehyde, oxidized dextran, served as the coating material and macromolecular crosslinker to create covalent linkage with two proteins for stabilization purposes. The heating time and crosslinker concentration were optimized to achieve the desirable colloidal stability in simulated gastric and intestinal fluids. Our results suggested that heating time played a more important role than the concentration of oxidized dextran. The optimized complex nanoparticles had a particle size of around 150 nm with a PDI < 0.1 and negative surface charge. Morphological observation by transmission electron microscopy revealed a spherical shape and uniform size distribution. Fourier transform infrared and fluorescence spectroscopies evidenced the formation of Schiff base complex, confirming the validity of covalent crosslinking. Furthermore, the complex nanoparticles demonstrated superior encapsulation properties for curcumin, showing an efficiency of >90% at 10% loading. A rather slow kinetic release profile of curcumin from complex nanoparticles was observed under simulated gastrointestinal conditions. The complex nanoparticles prepared from zein, NaCas, and oxidized dextran hold promising potential for the oral delivery of lipophilic bioactive compounds.[Abstract] [Full Text] [Related] [New Search]