These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation.
    Author: Albaladejo-Siguan M, Becker-Koch D, Taylor AD, Sun Q, Lami V, Oppenheimer PG, Paulus F, Vaynzof Y.
    Journal: ACS Nano; 2020 Jan 28; 14(1):384-393. PubMed ID: 31721556.
    Abstract:
    Solution-processed quantum dots (QDs) have a high potential for fabricating low-cost, flexible, and large-scale solar energy harvesting devices. It has recently been demonstrated that hybrid devices employing a single monovalent cation perovskite solution for PbS QD surface passivation exhibit enhanced photovoltaic performance when compared to standard ligand passivation. Herein, we demonstrate that the use of a triple cation Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 perovskite composition for surface passivation of the quantum dots results in highly efficient solar cells, which maintain 96% of their initial performance after 1200 h shelf storage. We confirm perovskite shell formation around the PbS nanocrystals by a range of spectroscopic techniques as well as high-resolution transmission electron microscopy. We find that the triple cation shell results in a favorable energetic alignment to the core of the dot, resulting in reduced recombination due to charge confinement without limiting transport in the active layer. Consequently, photovoltaic devices fabricated via a single-step film deposition reached a maximum AM1.5G power conversion efficiency of 11.3% surpassing most previous reports of PbS solar cells employing perovskite passivation.
    [Abstract] [Full Text] [Related] [New Search]