These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activity of caspase-8 determines plasticity between cell death pathways.
    Author: Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, Roose-Girma M, Modrusan Z, Sagolla MS, Webster JD, Dixit VM.
    Journal: Nature; 2019 Nov; 575(7784):679-682. PubMed ID: 31723262.
    Abstract:
    Caspase-8 is a protease with both pro-death and pro-survival functions: it mediates apoptosis induced by death receptors such as TNFR11, and suppresses necroptosis mediated by the kinase RIPK3 and the pseudokinase MLKL2-4. Mice that lack caspase-8 display MLKL-dependent embryonic lethality4, as do mice that express catalytically inactive CASP8(C362A)5. Casp8C362A/C362AMlkl-/- mice die during the perinatal period5, whereas Casp8-/-Mlkl-/- mice are viable4, which indicates that inactive caspase-8 also has a pro-death scaffolding function. Here we show that mutant CASP8(C362A) induces the formation of ASC (also known as PYCARD) specks, and caspase-1-dependent cleavage of GSDMD and caspases 3 and 7 in MLKL-deficient mouse intestines around embryonic day 18. Caspase-1 and its adaptor ASC contributed to the perinatal lethal phenotype because a number of Casp8C362A/C362AMlkl-/-Casp1-/- and Casp8C362A/C362AMlkl-/-Asc-/- mice survived beyond weaning. Transfection studies suggest that inactive caspase-8 adopts a distinct conformation to active caspase-8, enabling its prodomain to engage ASC. Upregulation of the lipopolysaccharide sensor caspase-11 in the intestines of both Casp8C362A/C362AMlkl-/- and Casp8C362A/C362AMlkl-/-Casp1-/- mice also contributed to lethality because Casp8C362A/C362AMlkl-/-Casp1-/-Casp11-/- (Casp11 is also known as Casp4) neonates survived more often than Casp8C362A/C362AMlkl-/-Casp1-/- neonates. Finally, Casp8C362A/C362ARipk3-/-Casp1-/-Casp11-/- mice survived longer than Casp8C362A/C362AMlkl-/-Casp1-/-Casp11-/- mice, indicating that a necroptosis-independent function of RIPK3 also contributes to lethality. Thus, unanticipated plasticity in death pathways is revealed when caspase-8-dependent apoptosis and MLKL-dependent necroptosis are inhibited.
    [Abstract] [Full Text] [Related] [New Search]