These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Automatic detection of arrhythmia from imbalanced ECG database using CNN model with SMOTE. Author: Pandey SK, Janghel RR. Journal: Australas Phys Eng Sci Med; 2019 Dec; 42(4):1129-1139. PubMed ID: 31728941. Abstract: Timely prediction of cardiovascular diseases with the help of a computer-aided diagnosis system minimizes the mortality rate of cardiac disease patients. Cardiac arrhythmia detection is one of the most challenging tasks, because the variations of electrocardiogram(ECG) signal are very small, which cannot be detected by human eyes. In this study, an 11-layer deep convolutional neural network model is proposed for classification of the MIT-BIH arrhythmia database into five classes according to the ANSI-AAMI standards. In this CNN model, we designed a complete end-to-end structure of the classification method and applied without the denoising process of the database. The major advantage of the new methodology proposed is that the number of classifications will reduce and also the need to detect, and segment the QRS complexes, obviated. This MIT-BIH database has been artificially oversampled to handle the minority classes, class imbalance problem using SMOTE technique. This new CNN model was trained on the augmented ECG database and tested on the real dataset. The experimental results portray that the developed CNN model has better performance in terms of precision, recall, F-score, and overall accuracy as compared to the work mentioned in the literatures. These results also indicate that the best performance accuracy of 98.30% is obtained in the 70:30 train-test data set.[Abstract] [Full Text] [Related] [New Search]