These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autophagy and Akt-mTOR signaling display periodic oscillations during torpor-arousal cycles in oxidative skeletal muscle of Daurian ground squirrels (Spermophilus dauricus).
    Author: Chang H, Peng X, Yan X, Zhang J, Xu S, Wang H, Wang Z, Ma X, Gao Y.
    Journal: J Comp Physiol B; 2020 Jan; 190(1):113-123. PubMed ID: 31729534.
    Abstract:
    Whether hibernation accelerates or suppresses autophagy is still unknown. In the current study, we examined changes in autophagy in oxidative soleus (SOL) muscle in summer active (SA), pre-hibernation (PRE), torpor (TOR), interbout arousal (IBA), and post-hibernation groups of Daurian ground squirrels (Spermophilus dauricus). Here, the SOL muscle showed no significant atrophy during hibernation in regard to muscle wet weight, fiber cross-sectional area, or MuRF1 protein level. Autophagy-related proteins beclin1 and Atg7 increased significantly, whereas LC3-II decreased significantly in the PRE group compared with the SA group. However, neither the expression nor activity of cathepsin L showed any differences between the SA and PRE groups. In addition, beclin1, LC3-II, and the LC3-II/LC3-I ratio increased, p62 decreased, LC3 puncta increased, p62 puncta decreased, and cathepsin L activity increased in the TOR group compared with the PRE group. In contrast, beclin1, LC3-II, and the LC3-II/LC3-I ratio decreased, p62 increased, LC3 puncta decreased, p62 puncta increased, and cathepsin L activity declined in the IBA group compared with the TOR group. Moreover, the phosphorylation of Akt (Ser473) and mTOR (Ser2448) changed significantly during hibernation and showed an inverse relationship with autophagy changes. In conclusion, autophagy proteins displayed periodic oscillation in the torpor-arousal cycle, which may be advantageous in maintaining SOL muscle mass during the entire hibernation period. Furthermore, the Akt-mTOR signaling was decreased in TOR and increased in IBA group in the SOL muscle of Daurian ground squirrels during hibernation.
    [Abstract] [Full Text] [Related] [New Search]