These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin.
    Author: Liu J, Li X, Weng W, Xie H, Luo G, Niu Y, Zhang S, Li G, Sun W.
    Journal: Mikrochim Acta; 2019 Nov 15; 186(12):783. PubMed ID: 31732804.
    Abstract:
    Porous carbon was prepared from wheat flour by alkali treatment and carbonization. The resulting biomass-derived porous carbon (BPC) was employed to prepare a Pt-Au-BPC nanocomposite by a hydrothermal method. The material was then placed on the surface of a carbon ionic liquid electrode (CILE). The Pt-Au-BPC was characterized by SEM, XPS, and the modified CILE by electrochemical methods. They revealed a porous structure, a large specific surface with high conductivity. Pt-Au-BPC/CILE was applied to the sensitive determination of quercetin. Electrochemical response was studied by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimized experimental conditions, the oxidation peak current (measured at 0.48 V vs. Ag/AgCl by DPV) increases linearly in the 0.15 to 6.0 μM and in the 10.0 to 25.0 μM quercetin concentration range. The detection limit is 50.0 nM (at 3σ). The Pt-Au-BPC/CILE was applied to the direct determination of quercetin in ginkgo tablets sample and gave satisfactory results. Graphical abstract A Pt-Au-BPC nanocomposite modified carbon ionic liquid electrode was applied to differential pulse voltammetric determination of quercetin. BPC: biomass-derived porous carbon.
    [Abstract] [Full Text] [Related] [New Search]