These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-144 relieves chronic constriction injury-induced neuropathic pain via targeting RASA1. Author: Zhang X, Guo H, Xie A, Liao O, Ju F, Zhou Y. Journal: Biotechnol Appl Biochem; 2020 Mar; 67(2):294-302. PubMed ID: 31737949. Abstract: MicroRNAs (miRNAs) have been shown to participate in development of neuropathic pain. However, the role of microRNA-144 (miR-144) in neuropathic pain remains unclear. In the present study, we established a neuropathic pain mouse model via chronic constriction injury (CCI)-induction. The successful establishment of this model was confirmed via evaluation of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). By using this model, we found that miR-144 was significantly downregulated in CCI-induced neuropathic pain mice. In addition, intrathecal injection of miR-144 agomiR alleviated mechanical and thermal hyperalgesia in neuropathic pain mice as shown by the increased of PWT and PWL. Moreover, miR-144 negatively regulated neuroinflammation by decreasing the expression of proinflammatory mediators, including TNF-α (tumor necrosis factor-α), IL (interleukin)-1β, and IL-6, thus facilitating the inhibition of neuropathic pain development. Mechanistically, RASA1 (RAS P21 Protein Activator 1) was downregulated following the injection of agomiR-144, and was verified to be a target of miR-144. Furthermore, overexpression of RASA1 reversed the inhibitory effect of miR-144 on neuropathic pain. Therefore, the present study suggested that miR-144 has the potential to be explored as therapeutic target for treatment of neuropathic pain.[Abstract] [Full Text] [Related] [New Search]