These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Near-perfect kinetic resolution of racemic p-chlorostyrene oxide by SlEH1, a novel epoxide hydrolase from Solanum lycopersicum with extremely high enantioselectivity. Author: Hu BC, Hu D, Li C, Xu XF, Wen Z, Wu MC. Journal: Int J Biol Macromol; 2020 Mar 15; 147():1213-1220. PubMed ID: 31739010. Abstract: An open reading frame of sleh1, a gene encoding for a novel epoxide hydrolase from Solanum lycopersicum (SlEH1), was amplified by RT-PCR and expressed in E. coli BL21(DE3). The substrate spectrum assay showed that E. coli/sleh1 had EH activities towards all tested substrates except for racemic (rac-) 5a, and the highest enantiomeric ratio (E > 200) towards rac-2a, retaining (R)-2a with 99.1% ees and 49.2% yields and affording (R)-2b with 89.8% eep and 46.7% yieldp. Besides, E. coli/sleh1 also hydrolyzed of rac-7a-9a with moderate regioselectivities, producing (S)- or (R)-7b-9b with 40.5-51.3% eep and 69.4-75.2% yieldp. The pH optimum and stability of the purified SlEH1 were 7.5 and at a range of 6.5-8.5, and it was thermostable at or below 40 °C. Its catalytic efficiency (kcatS/KmS = 7.49 mM-1 s-1) for (S)-2a was much higher than that for (R)-2a. The gram-scale kinetic resolution of 150 mM rac-2a was carried out by E. coli/sleh1 at 20 °C for 8 h, producing (R)-2a with 98.2% ees and 45.3% overall yields after purification by silica gel column chromatography. Furthermore, the source of extremely high enantioselectivity of SlEH1 towards rac-2a was analyzed by molecular docking simulations.[Abstract] [Full Text] [Related] [New Search]