These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and characterization of apoptosis-related gene serine/threonine kinase 17A (STK17A) from Japanese flounder Paralichthys olivaceus.
    Author: Xu Y, Feng Y, Li S, Sun J.
    Journal: Fish Shellfish Immunol; 2020 Mar; 98():1008-1016. PubMed ID: 31740399.
    Abstract:
    Apoptosis plays important roles in regulation of the immune response and has a direct impact on disease resistance in teleost. Death associated protein kinase (DAPK)-related Serine/Threonine kinase 17A (STK17A) is a positive apoptosis regulator. However, the expression and function of STK17A in fish still remains uninvestigated. In this study, we identified and characterized a STK17A gene (termed PoSTK17A) from Japanese flounder Paralichthys olivaceus. We also investigated the pro-apoptotic role of PoSTK17A in fish. Real-time quantitative PCR analysis revealed that PoSTK17A is widely present in various Japanese flounder tissues, and dominantly expressed in liver. Immune challenge experiments showed that PoSTK17A expression was upregulated by inflammatory challenge, Edwardsiella tarda infection and DNA-damaging agent cisplatin treatment as well. Immunofluorescence microscopy revealed that the recombinant PoSTK17A proteins are mainly located in the nucleus of Japanese flounder FG-9307 cells, and human Hela and MCF7 cells. However, PoSTK17A was translocated from the nucleus to cytoplasm following cisplatin treatment. Overexpression of PoSTK17A significantly increased the apoptosis in human MCF7 cells through both cisplatin-dependent and independent manners. Importantly, PoSTK17A also promotes the ATP-gated P2X7 receptor-mediated apoptosis in Japanese flounder FG-9307 cells. Collectively, we characterized an inducible STK17A gene (PoSTK17A) that may play a conserved pro-apoptotic role in fish.
    [Abstract] [Full Text] [Related] [New Search]