These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell.
    Author: Ge X, Cao X, Song X, Wang Y, Si Z, Zhao Y, Wang W, Tesfahunegn AA.
    Journal: Bioresour Technol; 2020 Jan; 296():122350. PubMed ID: 31744666.
    Abstract:
    This study investigates the performance of a pyrite-based constructed wetland-microbial fuel cell (PCW-MFC) in chemical oxygen demand (COD), nitrate (NO3--N), total inorganic nitrogen (TIN), and total phosphorus (TP) removal and bioelectricity generation, and explores the mechanisms involved. Four microcosms were used: a constructed wetland (CW), a pyrite-based constructed wetland (PCW), a constructed wetland-microbial fuel cell (CW-MFC), and a PCW-MFC. After 180 days' operation, the PCW-MFC exhibited enhanced simultaneous nitrate and phosphorus removal and bioelectricity output. The maximum COD, NO3--N, TIN, and TP removal efficiencies in the PCW-MFC were 71.9%, 70.1%, 63.2%, and 91.2%, respectively, for a hydraulic retention time (HRT) of 6 h. The mean bioelectricity output of the PCW-MFC was 19.0-28.4% higher than that of the CW-MFC. The nitrate removal rate constant of the PCW-MFC was 1.04 d-1, which is significantly higher than those of the others. Geobacter and sulfate-reducing bacteria were enriched in the PCW-MFC.
    [Abstract] [Full Text] [Related] [New Search]