These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of matrix stiffness and adhesion ligand density on chondrogenic differentiation of mesenchymal stem cells.
    Author: Zhan X.
    Journal: J Biomed Mater Res A; 2020 Mar; 108(3):675-683. PubMed ID: 31747107.
    Abstract:
    Adhesion ligands and mechanical properties of extracellular matrix (ECM) play significant roles in directing mesenchymal stem cells' (MSCs) behaviors, but how they affect chondrogenic differentiation of MSCs has rarely been studied. In this study, we investigated the effects of matrix stiffness and adhesion ligand density on proliferation and chondrogenic differentiation of MSCs by using UV crosslinked hydrogels comprised of methacrylated gelatin (GelMA) and poly(ethylene glycol) diacrylate (PEGDA) of different weight ratios. The PEGDA/GelMA hydrogels were fabricated by adjusting the weight ratio of PEGDA and GelMA with low or high adhesion ligand density (0.05 and 0.5% GelMA, respectively) and independent tunable stiffness (1.6, 6, and 25 kPa separately for hydrogels with 5, 10, and 15% PEGDA). MSCs presented differential behaviors to ECM by adjusting its adhesion ligand density and stiffness. Cell proliferation and chondrogenic differentiation could be enhanced with the improvement of adhesive properties and stiffness, evidenced by cell viability assay, hematoxylin-eosin staining, Safranin O staining, immunohistochemistry (Collagen types II, Col2a1), as well as the chondrogenic genes expression of Col2a1, Acan, and Sox9. This study may provide new strategies to design the scaffolds for cartilage tissue engineering.
    [Abstract] [Full Text] [Related] [New Search]