These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine.
    Author: Nejadshafiee V, Islami MR.
    Journal: Environ Sci Pollut Res Int; 2020 Jan; 27(2):1625-1639. PubMed ID: 31755054.
    Abstract:
    A novel and efficient bio-adsorbent based on magnetic activated carbon nanocomposites (MAC NCs)-modified by sulfamic acid (H3NSO3) has been developed from pistachio shell precursor as agricultural by-products and then was applied for heavy metal removal. Design an experimental model (Central Composite Design (CCD)) for adopting surface response could efficiently be used for adsorption process, and it is an economical way of obtaining the optimal adsorption conditions based on the limited number of experiments. The variants of adsorbent dosage, metal ion concentration, and contact time were optimized for Cu(II) metal by CCD. In addition, adsorption capacity and isoelectric point (pHzpc) of adsorbent were studied at different pH values. Kinetic and isotherm of adsorption were investigated via the Langmuir and the pseudo-second-order model. The maximum adsorption capacity using the Langmuir model was 277.77 mg g-1 for Cu(II) ions on H2NSO3-MAC NCs. Then adsorption process was investigated for ions of Fe(II), Zn(II), and Ni(II) under optimized condition. Also, the competitive adsorption of Fe(II), Zn(II), and Ni(II) ions mixed solution onto H2NSO3-MAC NCs was conducted. Adsorption-desorption results exhibited that the H2NSO3-MAC NCs can be used up to seven cycles while they have excellent performance. Finally, to evaluate the efficiency of this bio-adsorbent, the removal of heavy metals from wastewater of the Sarcheshmeh copper mine as a real sample was studied. Graphical abstract.
    [Abstract] [Full Text] [Related] [New Search]