These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro antioxidant and angiotensin-converting enzyme inhibitory activity of fermented milk with different culture combinations.
    Author: Li SN, Tang SH, He Q, Hu JX, Zheng J.
    Journal: J Dairy Sci; 2020 Feb; 103(2):1120-1130. PubMed ID: 31759585.
    Abstract:
    This study investigated the effects of Lactobacillus plantarum (Lp) and Bifidobacterium animalis ssp. lactis (Ba) in co-cultures with Streptococcus thermophilus (St) on changes in the acidification profile, proteolytic activity, peptide production, in vitro antioxidant activity, and angiotensin-converting enzyme (ACE) inhibitory properties of fermented milks during 21 d of storage at 4°C. The pH values and proteolysis in all batches showed a gradual decrease and increase during storage, respectively. The ACE-inhibitory activity and total antioxidant capacity of all co-fermented milk samples followed a similar pattern, with maximum values on d 6 of storage. The St starter, in conjunction with Ba or Lp or both, enhanced proteolysis, peptide generation, and ACE-inhibitory and antioxidant activity, but decreased pH values compared with St alone. The St-Ba-Lp samples showed higher DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, hydroxyl radical scavenging activity, and total antioxidant capacity, but similar superoxide anion scavenging activity compared to St-Ba or St-Lp samples. The St-Ba samples showed higher DPPH radical scavenging activity but lower hydroxyl radical scavenging activity than St-Lp samples. In the ACE-inhibitory assays, the St-Lp samples exhibited relatively low activity among the co-fermented milks, digested or not. The presence of Ba and Lp in fermentation together did not affect ACE-inhibitory activity in undigested fermented milks compared with the presence of Ba alone, and St-Ba-Lp fermented milks demonstrated an increase in ACE-inhibitory activity after simulated gastrointestinal digestion in storage. Pepsin digestion largely improved ACE-inhibitory activity, except in St-Lp samples, in which the activity was reduced. Further hydrolysis by trypsin reduced final activity in digestion. This study suggests that co-cultured fermentation with probiotics improves in vitro antioxidant and ACE inhibition activity in fermented milks, and this effect is partly due to the higher proteolytic activity of probiotics.
    [Abstract] [Full Text] [Related] [New Search]