These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Downregulation of microR-147b represses the proliferation and invasion of thyroid carcinoma cells by inhibiting Wnt/β-catenin signaling via targeting SOX15. Author: Xu C, Liu J, Yao X, Bai Y, Zhao Q, Zhao R, Kou B, Li H, Han P, Wang X, Guo L, Zheng Z, Zhang S. Journal: Mol Cell Endocrinol; 2020 Feb 05; 501():110662. PubMed ID: 31760045. Abstract: microRNA-147b (miR-147b) is a newly identified tumor-related miRNA that is dysregulated in multiple cancer types. Yet, the role of miR-147b in thyroid carcinoma remains unknown. Herein, we found that miR-147b expression was upregulated in thyroid carcinoma tissues and cell lines. miR-147b inhibition decreased the proliferation, colony formation, and invasion of thyroid carcinoma cells. The tumor suppressive gene SRY-related high-mobility-group box gene 15 (SOX15) was predicted as a miR-147b target gene. SOX15 expression was markedly decreased in thyroid carcinoma tissues and inversely correlated with the miR-147b expression. SOX15 overexpression repressed the proliferation and invasion of thyroid carcinoma cells associated with downregulation of Wnt/β-catenin signaling. SOX15 knockdown abolished the miR-147b-inhibition-mediated antitumor effect. miR-147b inhibition or SOX15 overexpression retarded the tumor growth of thyroid carcinoma cells in vivo. Overall, our study suggests that miR-147b inhibition restrains the proliferation and invasion of thyroid carcinoma cells through upregulation of SOX15 and inhibition of Wnt/β-catenin signaling.[Abstract] [Full Text] [Related] [New Search]