These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Early acetaminophen-protein adducts predict hepatotoxicity following overdose (ATOM-5).
    Author: Chiew AL, James LP, Isbister GK, Pickering JW, McArdle K, Chan BSH, Buckley NA.
    Journal: J Hepatol; 2020 Mar; 72(3):450-462. PubMed ID: 31760072.
    Abstract:
    BACKGROUND & AIMS: Acetaminophen-protein adducts are specific biomarkers of toxic acetaminophen (paracetamol) metabolite exposure. In patients with hepatotoxicity (alanine aminotransferase [ALT] >1,000 U/L), an adduct concentration ≥1.0 nmol/ml is sensitive and specific for identifying cases secondary to acetaminophen. Our aim was to characterise acetaminophen-protein adduct concentrations in patients following acetaminophen overdose and determine if they predict toxicity. METHODS: We performed a multicentre prospective observational study, recruiting patients 14 years of age or older with acetaminophen overdose regardless of intent or formulation. Three serum samples were obtained within the first 24 h of presentation and analysed for acetaminophen-protein adducts. Acetaminophen-protein adduct concentrations were compared to ALT and other indicators of toxicity. RESULTS: Of the 240 patients who participated, 204 (85%) presented following acute ingestions, with a median ingested dose of 20 g (IQR 10-40), and 228 (95%) were treated with intravenous acetylcysteine at a median time of 6 h (IQR 3.5-10.5) post-ingestion. Thirty-six (15%) patients developed hepatotoxicity, of whom 22 had an ALT ≤1,000 U/L at the time of initial acetaminophen-protein adduct measurement. Those who developed hepatotoxicity had a higher initial acetaminophen-protein adduct concentration compared to those who did not, 1.63 nmol/ml (IQR 0.76-2.02, n = 22) vs. 0.26 nmol/ml (IQR 0.15-0.41; n = 204; p <0.0001), respectively. The AUROC for hepatotoxicity was 0.98 (95% CI 0.96-1.00; n = 226; p <0.0001) with acetaminophen-protein adduct concentration and 0.89 (95% CI 0.82-0.96; n = 219; p <0.0001) with ALT. An acetaminophen-protein adduct concentration of 0.58 nmol/ml was 100% sensitive and 91% specific for identifying patients with an initial ALT ≤1,000 U/L who would develop hepatotoxicity. Adding acetaminophen-protein adduct concentrations to risk prediction models improved prediction of hepatotoxicity to a level similar to that obtained by more complex models. CONCLUSION: Acetaminophen-protein adduct concentration on presentation predicted which patients with acetaminophen overdose subsequently developed hepatotoxicity, regardless of time of ingestion. An adduct threshold of 0.58 nmol/L was required for optimal prediction. LAY SUMMARY: Acetaminophen poisoning is one of the most common causes of liver injury. This study examined a new biomarker of acetaminophen toxicity, which measures the amount of toxic metabolite exposure called acetaminophen-protein adduct. We found that those who developed liver injury had a higher initial level of acetaminophen-protein adducts than those who did not. CLINICAL TRIAL REGISTRATION: Australian Toxicology Monitoring (ATOM) Study-Australian Paracetamol Project: ACTRN12612001240831 (ANZCTR) Date of registration: 23/11/2012.
    [Abstract] [Full Text] [Related] [New Search]