These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The European delicacy Tuber melanosporum forms mycorrhizae with some indigenous Chinese Quercus species and promotes growth of the oak seedlings. Author: Wang R, Guerin-Laguette A, Butler R, Huang LL, Yu FQ. Journal: Mycorrhiza; 2019 Nov; 29(6):649-661. PubMed ID: 31760479. Abstract: We aimed to test whether Tuber melanosporum and native Chinese oak species could form stable mycorrhizal symbioses. Six oak species were all either inoculated or not, with spores of the Périgord black truffle in the greenhouse. Ectomycorrhizal development was monitored for up to 32 months. Seedling growth was assessed 2 years after inoculation. From 6 months after inoculation, Tuber melanosporum ectomycorrhizae were successfully produced on five Quercus species endemic to China, as shown by morphological, anatomical, and molecular analyses. Quercus mongolica and Q. longispica showed high receptivity to mycorrhization by T. melanosporum. The symbioses obtained with these two species and with Quercus senescens were stable for at least 32 months. Averaged over all three oak species, mycorrhization by T. melanosporum significantly enhanced canopy diameter, number of leaves, and mean leaf dimension. In spring 2019, mycorrhization by T. melanosporum accelerated budbreak in Q. mongolica. Quercus fabrei and Q. variabilis formed ectomycorrhizae up to 9 months after inoculation but seedlings died 3 months later, probably because of damage by grazing insects. Quercus pseudosemecarpifolia failed to form ectomycorrhizae. Results suggest that T. melanosporum-mycorrhized Q. mongolica and Q. longispica seedlings could be tested for ascocarp production and increased performance in the field.[Abstract] [Full Text] [Related] [New Search]