These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application. Author: Kim MS, Oh GW, Jang YM, Ko SC, Park WS, Choi IW, Kim YM, Jung WK. Journal: Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110352. PubMed ID: 31761165. Abstract: In this study, we fabricated polyvinyl alcohol hydrogels containing diphlorethohydroxycarmalol (DPHC) from Ishige okamurae for its anti-bacterial effect in wound-dressing applications. First, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DPHC against Staphylococcus aureus and Pseudomonas aeruginosa were investigated, and these were found to be about 128 μg/mL and 512 μg/mL, respectively. Polyvinyl alcohol hydrogels loaded with different concentrations of DPHC were then produced for the dressing of wounds to assist in the healing process and to provide an antibacterial effect. To investigate the characteristics of the proposed PVA/DPHC hydrogels, we conducted SEM analysis, rheological analysis, thermogravimetric analysis, water swelling analysis, drug release testing, and gel fraction assessment. The antibacterial activity of the PVA/DPHC hydrogels was also tested against the gram-positive bacterium S. aureus and the gram-negative bacterium P. aeruginosa using ASTM E2149 tests. The biocompatibility of the PVA/DPHC hydrogels was assessed using in vitro indirect and direct contact tests and in vivo tests on ICR mice. The PVA/DPHC hydrogels exhibited the ability to reduce the viability of S. aureus and P. aeruginosa by about 99% in ASTM E2149 testing, while not producing any toxic effect on NHDF-Neo or HaCaT cells as shown in MTT assays and in vitro FDA fluorescence analysis. In addition, the PVA/DPHC hydrogels had a strong wound healing effect when compared to non-treated groups of ICR mice in vivo. Based on the characterization of the PVA/DPHC hydrogels in vitro and in vivo, this study suggests that the proposed hydrogel has significant potential for use in wound dressing.[Abstract] [Full Text] [Related] [New Search]