These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Author: Nagase T, Iijima Y, Matsugaki A, Ameyama K, Nakano T. Journal: Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110322. PubMed ID: 31761171. Abstract: Novel TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo high-entropy alloys for metallic biomaterials (bio-HEAs) were developed based on the combination of Ti-Nb-Ta-Zr-Mo alloy system and Co-Cr-Mo alloy system as commercially-used metallic biomaterials. Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo bio-HEAs were designed using (a) a tree-like diagram for alloy development, (b) empirical alloy parameters for solid-solution-phase formation, and (c) thermodynamic calculations focused on solidification. The newly-developed bio-HEAs overcomes the limitation of classical metallic biomaterials by the improvement of (i) mechanical hardness and (ii) biocompatibility all together. The TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo bio-HEAs showed superior biocompatibility comparable to that of commercial-purity Ti. The superior biocompatibility, high mechanical hardness and low liquidus temperature for the material processing in TiZrHfCr0.2Mo and TiZrHfCo0.07Cr0.07Mo bio-HEAs compared with the Ti-Nb-Ta-Zr-Mo bio-HEAs gave the authenticity of the application of bio-HEAs for orthopedic implants with multiple functions.[Abstract] [Full Text] [Related] [New Search]