These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Topical treatment of cutaneous leishmaniasis with novel amphotericin B-miltefosine co-incorporated second generation ultra-deformable liposomes.
    Author: Dar MJ, Khalid S, McElroy CA, Satoskar AR, Khan GM.
    Journal: Int J Pharm; 2020 Jan 05; 573():118900. PubMed ID: 31765786.
    Abstract:
    The present study aims to optimize and evaluate amphotericin B (AmB) and miltefosine (MTF) co-loaded second generation ultra-deformable liposomes (SGUDLs) for the topical treatment of cutaneous leishmaniasis (CL). The development of an effective topical drug formulation against CL is desirable because of its non-invasive nature, which may potentially enhance the patient adherence and treatment accessibility. AmB-MTF co-loaded SGUDLs were prepared and characterized for size, entrapment efficiency (EE) and elasticity. The optimized formulation was then subjected to ex-vivo permeation studies in addition to cytotoxicity and anti-leishmanial assays. The co-loaded SGUDLs had an average size of 139.7 ± 1.7 nm and high EE of 77.8 ± 3.9% with respect to AmB. The ex-vivo permeation of co-loaded SGUDLs exhibited 6.15-fold higher permeation of AmB. A synergistic interaction was observed between AmB and MTF, and anti-leishmanial activity of co-loaded SGUDLs against amastigotes of Lesihmania mexicana indicated 8.62 and 6.12-fold lower IC50 values of AmB and MTF as compared to plain drug solutions, respectively. The results of the in-vivo study displayed a significant reduction in the parasitic burden in an infected BALB/c experimental model of CL. In conclusion, AmB-MTF co-loaded SGUDLs could be an effective topical treatment option against CL.
    [Abstract] [Full Text] [Related] [New Search]